bottom
Release 2.2.0

Joe Cross

Jun 01, 2022






CONTENTS

Installation 3
1.1 Standard Installation . . . . . . . . . . . . . e e e e e e 3
1.2 Alternative Installation . . . . . . . . . . . . . L e e e e e 3
Using Async 5
2.1 Connect/DIiSCONNECt . . . . . v v v i i e e e e e e e e e e e e e e e e e e e 5
2.2 Debugging . . . . ... e 6
API 7
3.1 Client.On . . . v i i it e e e e e e e e e 7
32 Client.trigger . . . . . i i i it e e e e e e e e e e e e 8
33 Client.walt . . . o i i i e e 9
34 Client.COnnect . . . . . v i i i i i it e e e e e e 9
3.5 Client.disconnect . . . . v i v i i it e e e e e 10
3.6 Client.send . . . . . i i i i i i e e e e e e 10
377 Client.handle_Taw . . . . v v v v i i it e e e e e e e 10
3.8 Client.send _Taw . . . . . v v v v i it e e e e 11
Events 13
4.1 TRCEvVents . . . . . . . e e e e e 13
4.2 Trig@ering . . . . v v v i e e e e e e e e e e e 13
43 Walting . . . . o e e e e e e e e e e e e e e e 14
4.4  Supported Events . . . . . . . . e e e e e e e 15
Commands 17
Extensions 21
6.1 Keepalive . . . . . . . L e 21
6.2  Returning new ObJECES . . . . . v . o i e e e e e e e e e e e e e e e e e 21
6.3  Patternmatching . . . . . . . . . . L e e e e e e e e e e e 23
6.4 Waitforany events . . . . . . . . .. L. e e e e e e e 24
6.5 Send and trig@er raw MESSAZES - « « « « v v v e b e e e e e e e e e e e e e e e e e e e e e 24
6.6 Rawhandlers . . . . . . . . L e 25
6.7 Full message encryption . . . . . . . . . . i e e e e e e e e e 26
Development 27
7.1 Versioning and RFC2812 . . . . . . . . e 27
7.2 ContribUtiNg . . . . v v e e e e e e e e e e e e e e e e e e e e e e e 27
7.3 TODO . . . e e 28







bottom, Release 2.2.0

With a very small API, bottom lets you wrap an IRC connection and handle events how you want. There are no
assumptions about reconnecting, rate limiting, or even when to respond to PINGs.

Explicit is better than implicit: no magic importing or naming to remember for plugins. Extend the client with the
same @on decorator.

Create an instance:

import asyncio
import bottom

host = 'chat.freenode.net'
port = 6697

ssl = True

NICK = "bottom-bot"
CHANNEL = "#bottom-dev"

bot = bottom.Client (host=host, port=port, ssl=ssl)

Send nick/user/join when connection is established:

@bot.on ('CLIENT_CONNECT")
async def connect (xxkwargs) :
bot.send ('NICK', nick=NICK)
bot.send ('USER', user=NICK,
realname="https://github.com/numberoverzero/bottom")

# Don't try to join channels until the server has
# sent the MOTD, or signaled that there's no MOTD.
done, pending = await asyncio.wait (

[bot.wait ("RPL_ENDOFMOTD"),

bot .wait ("ERR_NOMOTD") ],

loop=bot. loop,

return_when=asyncio.FIRST_COMPLETED

# Cancel whichever waiter's event didn't come in.
for future in pending:
future.cancel ()

bot.send ('JOIN', channel=CHANNEL)

Respond to ping:

@bot.on ('PING'")
def keepalive (message, xxkwargs):
bot.send ('PONG', message=message)

Echo messages (channel and direct messages):

@bot.on ('PRIVMSG')
def message (nick, target, message, *xkwargs):

mwn

"mm Echo all messages

# Don't echo ourselves
if nick == NICK:

(continues on next page)

CONTENTS 1



https://github.com/numberoverzero/bottom
user/extension.html

bottom, Release 2.2.0

(continued from previous page)

return
# Respond directly to direct messages
if target == NICK:

bot.send ("PRIVMSG", target=nick, message=message)
# Channel message

else:
bot.send ("PRIVMSG", target=target, message=message)

Connect and run the bot forever:

bot.loop.create_task (bot.connect ())
bot.loop.run_forever ()

CONTENTS



CHAPTER
ONE

INSTALLATION

Bottom supports Python 3.10+ and has no external dependencies.

1.1 Standard Installation

The easiest way is with pip:

’pip install bottom

1.2 Alternative Installation

Sometimes the code on GitHub is ahead of the latest PyPI release. There are two ways to install from GitHub. First,
by cloning the repo:

git clone git://github.com/numberoverzero/bottom.git
pip install ./bottom

Since pip supports installing from a git repo, you can also use:

pip install -e git://github.com/numberoverzero/bottom.git#egg=bottom




bottom, Release 2.2.0

4 Chapter 1. Installation



CHAPTER
TWO

USING ASYNC

Bottom accepts bot synchronous and async functions as callbacks. Both of these are valid handlers for the privmsg
event:

@client.on('privmsg')
def synchronous_handler (xxkwargs) :
print ("Synchronous call")

@Qclient.on('privmsg')

async def async_handler (xxkwargs) :
await asyncio.sleep (1)
print ("Async call")

2.1 Connect/Disconnect

Client connect and disconnect are coroutines so that we can easily wait for their completion before performing more
actions in a handler. However, we don’t always want to wait for the action to complete. How can we do both?

Let’s say that on disconnect we want to reconnect, then notify the room that we’re back. We need to await for the
connection before sending anything:

@client.on('client_disconnect')

async def reconnect (xxkwargs) :
# Wait a second so we don't flood
await asyncio.sleep(2)

# Wait until we've reconnected
await client.connect ()

# Notify the room
client.send('privmsg', target='#bottom-dev',
message="1'm baaack!")

What about a handler that doesn’t need an established connection to finish? Instead of notifying the room, let’s log the
reconnect time and return:

import arrow

import asyncio

import logging

logger = logging.getLogger (__name_ )

(continues on next page)




bottom, Release 2.2.0

(continued from previous page)

@client.on('client_disconnect')

async def reconnect (x*xkwargs) :
# Wait a second so we don't flood
await asyncio.sleep(2)

# Schedule a connection when the loop's next available
asyncio.create_task (client.connect ())

# Record the time of the disconnect event
now = arrow.now ()
logger.info ("Reconnect started at " + now.isoformat ())

We can also wait for the c1ient_connect event to trigger, which is slightly different than waiting for client.connect
to complete:

@client.on('client_disconnect')

async def reconnect (xxkwargs) :
# Wait a second so we don't flood
await asyncio.sleep(2)

# Schedule a connection when the loop's next available
asyncio.create_task(client.connect ())

# Wait until client_connect has triggered
await client.wait ("client connect™)

# Notify the room
client.send('privmsg', target='#bottom-dev',
message="1'm baaack!")

2.2 Debugging

You can get more asyncio debugging info by running python with the -X dev flag:

python -X dev my_bot.py

For more information, see: Python Development Mode.

6 Chapter 2. Using Async



https://docs.python.org/3/library/devmode.html#devmode

CHAPTER
THREE

API

3.1 Client.on

’client.on(event)(func)

This decorator is the main way you’ll interact with a Client. For a given event name, it registers the decorated
function to be invoked when that event occurs. Your decorated functions should always accept = xkwargs, in case
unexpected kwargs are included when the event is triggered.

The usual IRC commands sent from a server are triggered automatically, or can be manually invoked with trigger.
You may register handlers for any string, making it easy to extend bottom with your own signals.

Not all available arguments need to be used. Both of the following are valid:

@bot.on ('PRIVMSG')
def event (nick, message, target, xxkwargs):

""r Doesn't use user, host. argument order is different """
# message sent to bot - echo message
if target == bot.nick:

bot.send ('PRIVMSG', target, message=message)
# Some channel we're watching
elif target == bot.monitored_channel:
logger.info (" > : ".format (nick, target, message))

@bot.on ('PRIVMSG')
def func(message, target, =*xkwargs):
mrroJust waiting for the signal """
if message == codeword && target == secret_channel:
execute_heist ()

Handlers do not need to be async functions - non async will be wrapped prior to the bot running. For example, both
of these are valid:

@bot.on ('PRIVMSG')
def handle (message, *xkwargs):
print (message)

@bot.on ('PRIVMSG'")
async def handle (message, *xkwargs):
await async_logger.log (message)

Finally, you can create your own events to trigger and handle. For example, let’s catch SIGINT and gracefully shut
down the event loop:




bottom, Release 2.2.0

import signal

def handle_sigint (signum, frame):

print ("SIGINT handler")

bot.trigger ("my.sigint.event")
signal.signal (signal.SIGINT, handle_sigint)

@bot.on("my.sigint.event")

async def handle (xxkwargs) :
print ("SIGINT trigger")
await bot.disconnect ()

# Signal a stop before disconnecting so that any reconnect
# coros aren't run by the last run forever sweep.
bot.loop.stop ()

bot.loop.create_task (bot.connect ())
bot.loop.run_forever () # Ctrl + C here

3.2 Client.trigger

client.trigger (event, +*+kwargs)

Manually inject a command or reply as if it came from the server. This is useful for invoking other handlers. Because
trigger doesn’t block, registered callbacks for the event won’t run until the event loop yields to them.

Events don’t need to be valid irc commands; any string is available.

# Manually trigger "PRIVMSG' handlers:
bot.trigger ('privmsg', nick="always_says_no", message="yes")

# Rename !commands to !help
@bot.on ('privmsg"')
def parse(nick, target, message, xxkwargs):

if message == '!commands':
bot.send('privmsg', target=nick,
message="!commands was renamed to 'help in 1.2")

# Don't make them retype it, trigger the correct command
bot.trigger ('privmsg', nick=nick,
target=target, message="!help")

Because the @on decorator returns the original function, you can register a handler for multiple events. It’s especially
important to use = xkwargs correctly here, to handle different keywords for each event.

# Simple recursive-style countdown
@bot.on ('privmsg')
@bot.on ('countdown')
async def handle (target, message, remaining=None, xxkwargs):

# Entry point, verify command and parse from message

if remaining is None:

if not message.startswith("!countdown") :
return

(continues on next page)

8 Chapter 3. API




bottom, Release 2.2.0

(continued from previous page)

# !countdown 10

remaining = int (message.split (" ") I[-1])
if remaining == 0:

message = "Countdown complete!"
else:

message = "{}...".format (remaining)

# Assume for now that target is always a channel
bot.send("privmsg", target=target, message=message)

if remaining:
# After a second trigger another countdown event
await asyncio.sleep(l, loop=bot.loop)
bot.trigger ('countdown', target=target,
message=message, remaining=remaining - 1)

3.3 Client.wait

await client.wait (event)

Wait for an event to trigger:

@bot.on("client_disconnect")

async def reconnect (xxkwargs) :
# Trigger an event that may cascade to a client_connect.
# Don't continue until a client_connect occurs,
# which may be never.

bot.trigger ("some.plugin.connection.lost")

await client.wait ("client_connect")

# If we get here, one of the plugins handled connection lost by
# reconnecting, and we're back. Send some messages, etc.

client.send("privmsg", target=bot.CHANNEL,
message="Happy Birthday!")

3.4 Client.connect

await client.connect ()

Connect to the client’s host, port.

@bot.on('client_disconnect')
async def reconnect (xxkwargs) :
# Wait a few seconds
await asyncio.sleep (3, loop=bot.loop)
await bot.connect ()
# Now that we're connected, let everyone know
bot.send('privmsg', target=bot.channel, message="I'm back.")

You can schedule a non-blocking connect with the client’s event loop:

3.3. Client.wait 9



bottom, Release 2.2.0

@bot.on('client_disconnect')
def reconnect (xxkwargs) :
# Wait a few seconds

# Note that we're not in a coroutine, so we don't have access
# to await and asyncio.sleep
time.sleep (3)

# After this line we won't necessarily be connected.
# We've simply scheduled the connect to happen in the future

bot.loop.create_task (bot.connect ())

print ("Reconnect scheduled.")

3.5 Client.disconnect

’await client.disconnect ()

Immediately disconnect from the server.

@bot.on ('privmsg')
async def disconnect_bot (nick, message, xxkwargs):
if nick == "myNick" and message == "disconnect:hunter2":
await bot.disconnect ()
logger.log("disconnected bot.")

Like connect, use the bot’s event loop to schedule a disconnect:

’bot.loop.create_task(bot.disconnect())

3.6 Client.send

client.send(command, =**kwargs)

Send a command to the server. See Commands.

3.7 Client.handle raw

New in version 2.1.0.

client.handle_raw (message)

Manually inject a raw command. The client’s raw_handlers will process the message. By default, every Client
is configured with a r£c2812_handler which unpacks a conforming rfc 2812 message into an event and calls

client.trigger.

You can disable this functionality by removing the handler:

client = Client (host="localhost", port=443)
client.raw_handlers.clear ()

10

Chapter 3. API



user/commands.html

bottom, Release 2.2.0

3.8 Client.send raw

New in version 2.1.0.

’ client.send_raw (message)

Send a complete IRC line without the Client reconstructing or modifying the message. To easily send an rfc 2812
message, you should instead consider Client . send.

3.8. Client.send_raw 11



bottom, Release 2.2.0

12 Chapter 3. API



CHAPTER
FOUR

EVENTS

In bottom, an event is simply a string and set of * xkwargs to be passed to any handlers listening for that event:

@client.on('any string is fine')
def handle (x*xkwargs) :
if 'potato' in kwargs:
print ("Found a potato!™)

4.1 IRC Events

While connected, a client will trigger events for valid IRC commands that it receives, with kwargs according to
that command’s structure. For example, the “part” event will always include the nickmask (nick, user, host),
message, and channel kwargs, even if the message was empty:

@client.on ("part")

def handle (nick, user, host, message, channel, *+kwargs):
out = "User '{}ad left with ' rn
print (out.format (nick, user, host, channel, message))

Because kwargs contains those fields, we could also use:

@client.on ("part")
def handle (xxkwargs) :
out = ("User ! @ left"
" with ' |
print (out.format (»+kwargs))

4.2 Triggering

The same mechanism that the client uses to dispatch events can be invoked manually, either for custom events or to
simulate receiving an irc command:

@client.on ("privmsg")
def handle (x+xkwargs) :
print ("Someone sent a message!")

client.trigger ("privmsg")

13




bottom, Release 2.2.0

Running the above won’t print anything, however. Triggering an event only schedules the registered handlers (like the
function we defined) to run in the future. Until we run the event loop, the triggered handlers won’t be invoked. Let’s
see that print statement:

asyncio.get_event_loop () .run_forever ()

We can pass arbitrary kwargs to handlers through t rigger:

client.trigger ("event")
client.trigger ("event", *xsome_dict)
client.trigger ("event", nick="bot", message="hello, world")

4.3 Waiting

Sometimes we need to wait for another event to occur before continuing. For example, consider a reconnect handler
that wants to trigger the “reconnect” event for some plugins, but only after the connection has actually been established.
The following will incorrectly signal that the reconnect has completed, while in reality the client has only scheduled a
connection for the future:

@client.on("client_disconnect")
def reconnect (xxkwargs) :
client.connect ()
client.trigger ("reconnect", reconnect_msg="May not be connected!")

@client.on ("reconnect")
def handle_reconnect (reconnect_msg="", **kwargs):
if reconnect_msg:
client.send("privmsg", target=CHANNEL, message=reconnect_msg)

Because both client.send and client.connect schedule coroutines, the event loop may reorder (or process
out of order). In reconnect what we really want to do is wait until the client_connect event is emitted, and then
trigger the reconnect event:

@client.on("client_disconnect")
async def reconnect (xxkwargs) :
client.connect ()
await client.wait ("client_connect™)
client.trigger ("reconnect", reconnect_msg="May not be connected!")

Whenever an event triggers, an asyncio.Event is set and cleared, which allows any code that is waiting on that
event to continue. Be careful using client .wait - because we can call trigger with any string, wait will allow us
to wait (forever) for events that may never trigger.

14 Chapter 4. Events



bottom, Release 2.2.0

4.4 Supported Events

# Local only events
client.trigger ('CLIENT_CONNECT")
client.trigger ('CLIENT_DISCONNECT")

* PING

* JOIN

e PART

* PRIVMSG

* NOTICE

¢ USERMODE (renamed from MODE)
¢ CHANNELMODE (renamed from MODE)
 RPL_WELCOME (001)

* RPL_YOURHOST (002)

* RPL_CREATED (003)

* RPL_MYINFO (004)

* RPL_BOUNCE (005)

* RPL_MOTDSTART (375)
 RPL_MOTD (372)

* RPL_ENDOFMOTD (376)

* RPL_LUSERCLIENT (251)

* RPL_LUSERME (255)

* RPL_LUSEROP (252)

* RPL_LUSERUNKNOWN (253)
* RPL_LUSERCHANNELS (254)
* ERR_NOMOTD (422)

4.4. Supported Events

15




bottom, Release 2.2.0

16 Chapter 4. Events



CHAPTER
FIVE

COMMANDS

client.send('PASS', password='hunter2')

client.send ('NICK', nick='Wiz")

# mode is optional, default is 0

client.send('USER', user='WiZ-user', realname='Ronnie')
client.send('USER', user='WiZ-user', mode='8', realname='Ronnie')
client.send('OPER', user='WiZ', password='hunter2')

# Renamed from MODE

client.send ('USERMODE', nick='Wiz')

client.send ('USERMODE', nick='WiZ', modes='+io")

client.send ('SERVICE', nick='CHANSERV', distribution='x.en',
type='0"', info='manages channels')

client.send ('QUIT")

client.send('QUIT', message='Gone to Lunch')

client.send('SQUIT', server='tolsun.oulu.fi')

client.send('SQUIT', server='tolsun.oulu.fi', message='Bad Link")

client.send('JOIN', channel='#foo-chan')

client.send('JOIN', channel='#foo-chan', key='foo-key")

client.send('JOIN', channel=['#foo-chan', '#other'],
key='foo-key') # other has no key

client.send('JOIN', channel=['#foo-chan', '#other'],
key=['foo-key', 'other-key'])

# this will cause you to LEAVE all currently joined channels

client.send('JOIN', channel='0")

client.send ('PART', channel='#foo-chan')

client.send ('PART', channel=['"#foo-chan', '#other'])

client.send ('PART', channel='#foo-chan', message='I lost')

# Renamed from MODE

client.

send ('CHANNELMODE', channel="#foo-chan', modes='+b'")

(continues on next page)

17




bottom, Release 2.2.0

(continued from previous page)

client.send ('CHANNELMODE', channel='#foo-chan', modes='+1",
params='10")

client.send('TOPIC', channel="'#foo-chan')

client.send('TOPIC', channel='#foo-chan', # Clear channel message
message="'")

client.send('TOPIC', channel='#foo-chan',
message='Yes, this is dog')

# target requires channel

client.send('NAMES")

client.send ('NAMES', channel='"#foo-chan')

client.send ('NAMES', channel=['#foo-chan', '#other'])

client.send ('NAMES', channel=['#foo-chan', '#other'],
target="'remote.x.edu')

# target requires channel

client.send ('LIST")

client.send('LIST', channel='#foo-chan')

client.send('LIST', channel=['#foo-chan', '#other'])

client.send('LIST', channel=['"#foo-chan', '#other'],
target="'remote.x.edu')

client.send ('INVITE', nick='WiZ-friend', channel='"'#bar—-chan')

# nick and channel must have the same number of elements
client.send('KICK', channel='#foo-chan', nick='Wiz")
client.send('KICK', channel='#foo-chan', nick='wiz',
message="'Spamming')
client.send('KICK', channel='#foo-chan', nick=['Wiz', 'WiZ-friend'])
client.send('KICK', channel=['#foo', '#bar'],
nick=['Wiz', 'WiZ-friend'])

client.send('PRIVMSG', target='WiZ-friend', message='Hello, friend!"')

client.send('NOTICE', target='#foo-chan',
message="'Maintenance in 5 mins"')

client.send('MOTD")
client.send('MOTD', target='remote.x.edu')

client.send ('LUSERS")
client.send ('LUSERS', mask='+*.edu')
client.send ('LUSERS', mask='x.edu', target='remote.x.edu')

client.send ('VERSION'")

# target requires query

client.send ('STATS")

client.send('STATS', query='m'")

client.send('STATS', query='m', target='remote.x.edu')

18 Chapter 5. Commands




bottom, Release 2.2.0

# remote requires mask

client.send ('LINKS")

client.send ('LINKS', mask='"*.bu.edu')

client.send('LINKS', mask='x.bu.edu', remote='«x.edu')

client.send ('TIME")

client.send('TIME', target='remote.x.edu')

client.send('CONNECT', target='tolsun.oulu.fi', port=6667)

client.send ('CONNECT', target='tolsun.oulu.fi', port=6667,
remote="x.edu')

client.send ('TRACE")

client.send('TRACE', target='remote.x.edu')

client.send('ADMIN'")

client.send('ADMIN', target='remote.x.edu')

client.send ('INFO'")

client.send('INFO', target='remote.x.edu')

# type requires mask

client.send('SERVLIST', mask='*SERV'")

client.send ('SERVLIST', mask='xSERV', type=3)

client.send('SQUERY', target='irchelp', message='HELP privmsg')

client.send ('WHO")

client.send ('WHO', mask='"*.fi'")

client.send('WHO', mask='*.fi', o=True)

client.send ('WHOIS', mask='x.fi")

client.send ('WHOIS', mask=['x.fi', 'x.edu'], target='remote.x.edu')

# target requires count

client.send ('WHOWAS', nick='Wiz")

client.send ('WHOWAS', nick='WiZz', count=10)

client.send ('WHOWAS', nick=['Wiz', 'WiZ-friend'], count=10)
client.send ('WHOWAS', nick='WiZ', count=10, target='remote.x.edu')
client.send('KILL', nick='WiZ', message='Spamming Joins')

# PING the server you are connected to

client.send ('PING")

client.send('PING', message='Test..")

# when replying to a PING, the message should be the same
client.send('PONG')

client.send('PONG', message='Test..")

client.send('AWAY")

client.send('AWAY', message='Gone to Lunch')

19




bottom, Release 2.2.0

client.send ('REHASH'")

client.send('DIE")

client.send ('RESTART")

# target requires channel

client.send('SUMMON', nick='Wiz")

client.send('SUMMON', nick='WiZz', target='remote.x.edu')

client.send('SUMMON', nick='WiZ', target='remote.*.edu',
channel="#foo-chan')

client.send ('USERS")
client.send('USERS', target='remote.x.edu')

client.send ('WALLOPS', message='Maintenance in 5 minutes')

client.send ('USERHOST', nick='wiz")
client.send ('USERHOST', nick=['Wiz', '"WiZ-friend'])

client.send('ISON', nick='Wiz")
client.send('ISON', nick=['Wiz', 'WiZ-friend'])

20

Chapter 5. Commands




CHAPTER
SIX

EXTENSIONS

bottom doesn’t have any clever import hooks to identify plugins based on name, shape, or other significant denomina-

tion. Instead, we can create extensions by using client.ononaClient instance.

6.1 Keepalive

Instead of writing the same P ING handler everywhere, a reusable plugin:

# my_plugin.py
def keepalive(client):
@client.on ("ping")
def handle (message=None, +*x*kwargs):
message = message or ""
client.send("pong", message=message)

That’s it! And to use it:

import bottom
from my plugin import keepalive

client = bottom.Client (...)
keepalive (client)

6.2 Returning new objects

Aside from subclassing bottom.Client, we can use a class to expose additional behavior around a client. This can
be useful when we’re worried about other plugins assigning different meaning to the same attributes:

# irc_logging.py
class Logger:
def _ init_ (self, client, local_logger):
self.client = client
self.local = local_logger
client.on("client_disconnect", self._on_disconnect)

def log(self, level, message):
try:

self.client.send (" : ".format (level.upper (), message))

catch RuntimeError:
self.local.warning("Failed to log to remote")

(continues on next page)

21




bottom, Release 2.2.0

(continued from previous page)

# Get the local logger's method by name

# ex. ‘self.local.info’

method = getattr(self.local, level.lower())
method (message)

def _on_disconnect (self):
self.local.warning ("Remote logging client disconnected!")
def debug(self, message):

self.log("debug", message)

# Same for info, warning,

And its usage:

import asyncio
import bottom
import logging
from irc logging import Logger

local_logger = logging.getLogger ( name )

client = bottom.Client (...)
remote_logger = Logger (client, local_logger)

@client.on ("client_connect™")
def log_connect (x+xkwargs) :
remote_logger.info ("Connected!")

# Connect and send "INFO: Connected!"
asyncio.create_task (client.connect ())
asyncio.get_event_loop () .run_forever ()

Notice that the logging functionality is part of a different object, not the client. This keeps the namespace clean, and
reduces the attribute contention that can occur when multiple plugins store their information directly on the client
instance.

This line hooked the logger’s disconnect handler to the client:

def _ init_ (self, client, ...):

client.on("client_disconnect", self._on_disconnect)

22 Chapter 6. Extensions



bottom, Release 2.2.0

6.3 Pattern matching

We can write a simple wrapper class to annotate functions to handle PRIVMSG matching a regex. To keep the interface
simple, we can use bottom’s annotation pattern and pass the regex to match.

In the following example, we’ll define a handler that echos whatever a user asks for, if it’s in the correct format:

import bottom
client = bottom.Client (host=host, port=port, ssl=ssl)

router = Router (client)

@router.route (""bot, say (\w+)\.S")
def echo(self, nick, target, message, match, *+kwargs):

if target == router.nick:
# respond in a direct message
target = nick

client.send("privmsg", target=target, message=match.group(1l))

Now, the Router class needs to manage the regex -> handler mapping and connect an event handler to PRIVMSG on
its client:

import asyncio
import functools
import re

class Router (object) :
def _ init_ (self, client):
self.client = client
self.routes = {}
client.on ("PRIVMSG") (self._handle)

def _handle(self, nick, target, message, *xkwargs):
mnnm o client callback entrance """
for regex, (func, pattern) in self.routes.items():
match = regex.match (message)
if match:
self.client.loop.create_task (func(nick, target, message, match,
—*xxkwargs) )

def route(self, pattern, func=None, +**kwargs):
if func is None:
return functools.partial (self.route, pattern)

# Decorator should always return the original function
wrapped = func
if not asyncio.iscoroutinefunction (wrapped) :

wrapped = asyncio.coroutine (wrapped)

compiled = re.compile (pattern)
self.routes[compiled] = (wrapped, pattern)
return func

6.3. Pattern matching 23




bottom, Release 2.2.0

6.4 Wait for any events

Use Client.wait () to pause until one or all signals have fired. For example, after sending NICK/USER
during CLIENT_CONNECT, some servers will ignore subsequent commands until they have finished sending
RPL_ENDOFMOTD. This can be used to wait for any signal that the MOTD has been sent (eg. ERR_NOMOTD
may be sent instead of RPL_ENDOFMOTD).

import asyncio

def waiter (client):
async def wait_for (xevents, return_when=asyncio.FIRST_COMPLETED) :
if not events:
return
done, pending = await asyncio.wait (
[bot.wait (event) for event in events],
return_when=return_when)

# Cancel any events that didn't come in.
for future in pending:
future.cancel ()
return wait_for

To use in the CLIENT_CONNECT process:

import bottom
client = bottom.Client (...)
wait_for = waiter (client)

@client.on ("CLIENT_CONNECT")
async def on_connect (xxkwargs) :
client.send('nick', ...)
client.send('user', ...)

await wait_for ('RPL_ENDOFMOTD', 'ERR_NOMOTD'")

client.send('join', ...)

6.5 Send and trigger raw messages

New in version 2.1.0.

Extensions do not need to strictly conform to rfc 2812. You can send or trigger custom messages with Client.
send_rawand Client.handle_raw. For example, the following can be used to request Twitch.tv’s Membership
capability using IRC v3’s capabilities registration:

client = MyTwitchClient (...)
client.send_raw ("CAP REQ :twitch.tv/membership")

Just as Client .trigger can be used to manually invoke handlers for a specific event, Client .handle_raw
can be called to manually invoke raw handlers for a given message. For the above example, you can ensure you handle
the response from Twitch.tv with the following:

24 Chapter 6. Extensions



https://dev.twitch.tv/docs/v5/guides/irc#twitch-specific-irc-capabilities
https://dev.twitch.tv/docs/v5/guides/irc#twitch-specific-irc-capabilities

bottom, Release 2.2.0

response = ":tmi.twitch.tv CAP % ACK :twitch.tv/membership"
client = MyTwitchClient (...)
client.handle_raw (response)

6.6 Raw handlers

New in version 2.1.0.

Clients can extend or replace the default message handler by modifying the Client.raw_handlers list. This
is a list of async functions that take a (next_handler, message) tuple. To allow the next handler to process
a message, call next_handler (message) within your handler. You may also send a different message to the
subsequent handler, or not invoke it at all.

The following listens for responses from twitch.tv about capabilities and logs them. Otherwise, it passes the message
on to the next handler.

import re
CAPABILITY_ RESPONSE_PATTERN = re.compile (
"Artmi\.twitch\.tv CAP \x ACK :twitch\.tv/\w+$")

async def capability handler (next_handler, message) :
if CAPABILITY_RESPONSE_PATTERN.match (message) :
print ("Capability granted: " + message)
else:
await next_handler (message)

And to ensure it runs before the default handler:

client = Client(...)
client.raw_handlers.insert (0, capability_handler)

Unlike Client . on, raw handlers must be async functions.

Handlers may send a different message than they receive. The following can be used to forward messages from one
chat room to another:

from bottom.pack import pack_command
from bottom.unpack import unpack_command

def forward(old_room, new_room) :
async def handle (next_handler, message):
try:
event, kwargs = unpack_command (message)
except ValueError:
# pass message unchanged

pass
else:
if event.lower () == "privmsg":
if kwargs["target"].lower () == old_room.lower () :
kwargs["target"] = new_room
message = pack_command ("privmsg", xxkwargs)

await next_handler (message)
return handle

6.6. Raw handlers 25




bottom, Release 2.2.0

And its usage:

client = Client(...)

forwarding = forward("bottom-legacy", "bottom-dev")
client.raw_handlers.insert (0, forwarding)

6.7 Full message encryption

This is a more complex example of a raw handler where messages are encrypted and then base64 encoded. On the wire
their only similarity with the IRC protocol is a newline terminating character. This is enough to build an extension to
transparently encrypt data.

Assume you have implemented a class with the following interface:

class EncryptionContext:
def encrypt(self, data: bytes) —-> bytes:

def decrypt(self, data: bytes) —-> bytes:

the following extension can be written:

import base64

def encryption_handler (context: EncryptionContext):
async def handle_decrypt (next_handler, message):
message = context.decrypt (
baseb64.b64decode (
message.encode ("utf-8")
)
) .decode ("utf-8")
await next_handler (message)
return handle_decrypt

to encrypt messages as they are sent, the class can override Client .send_raw. Adding in the encryption handler
above:

class EncryptedClient (Client) :
def _ _init__ (self, encryption_context, *xkwargs):
super () .__init__ (xxkwargs)
self.raw_handlers.append (
encryption_handler (encryption_context))
self.context = encryption_context

def send_raw(self, message: str) —> None:
message = baseb64.bb6dencode (
self.context.encrypt (
message.encode ("utf-8")
)
) .decode ("utf-8")
super () .send_raw (message)

26 Chapter 6. Extensions




CHAPTER
SEVEN

DEVELOPMENT

7.1 Versioning and RFC2812

* Bottom follows semver for its public API.

— Currently, Client is the only public member of bottom.

— IRC replies/codes which are not yet implemented may be added at any time, and will correspond to a patch

- the function contract of @on method does not change.
— You should not rely on the internal api staying the same between minor versions.

— Over time, private apis may be raised to become public. The reverse will never occur.

7.2 Contributing

Contributions welcome! Please make sure t ox passes (including flake8 and docs build) before submitting a PR.

Pull requests that decrease coverage will not be merged.

7.2.1 Development

bottom uses tox, pytest, coverage, and £1ake8. To get everything set up in a new virtualenv:

git clone https://github.com/numberoverzero/bottom.git
cd bottom

python3.10 -m venv --copies .venv

source .venv/bin/activate

pip install -r requirements.txt

pip install -e .

tox

27




bottom, Release 2.2.0

7.2.2 Documentation

Documentation improvements are especially appreciated. For small changes, open a pull request! If there’s an area you
feel is lacking and will require more than a small change, open an issue to discuss the problem - others are probably
also confused, and may have suggestions to improve the same area.

7.3 TODO

* Better Client docstrings
¢ Add missing replies/errors to unpack . py : unpack_command
— Add reply/error parameters to unpack.py :parameters

— Document events, client.send

28 Chapter 7. Development


https://github.com/numberoverzero/bottom/pulls
https://github.com/numberoverzero/bottom/issues/new

	Installation
	Standard Installation
	Alternative Installation

	Using Async
	Connect/Disconnect
	Debugging

	API
	Client.on
	Client.trigger
	Client.wait
	Client.connect
	Client.disconnect
	Client.send
	Client.handle_raw
	Client.send_raw

	Events
	IRC Events
	Triggering
	Waiting
	Supported Events

	Commands
	Extensions
	Keepalive
	Returning new objects
	Pattern matching
	Wait for any events
	Send and trigger raw messages
	Raw handlers
	Full message encryption

	Development
	Versioning and RFC2812
	Contributing
	TODO


